218 research outputs found

    The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    Get PDF
    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted

    Strain control of superlattice implies weak charge-lattice coupling in La0.5_{0.5}Ca0.5_{0.5}MnO3_3

    Full text link
    We have recently argued that manganites do not possess stripes of charge order, implying that the electron-lattice coupling is weak [Phys Rev Lett \textbf{94} (2005) 097202]. Here we independently argue the same conclusion based on transmission electron microscopy measurements of a nanopatterned epitaxial film of La0.5_{0.5}Ca0.5_{0.5}MnO3_3. In strain relaxed regions, the superlattice period is modified by 2-3% with respect to the parent lattice, suggesting that the two are not strongly tied.Comment: 4 pages, 4 figures It is now explained why the work provides evidence to support weak-coupling, and rule out charge orde

    Parameterized complexity of the MINCCA problem on graphs of bounded decomposability

    Full text link
    In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The "Minimum Changeover Cost Arborescence" (MINCCA) problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by G\"oz\"upek et al. [TCS 2016] that the problem is FPT when parameterized by the treewidth and the maximum degree of the input graph. In this article we present the following results for the MINCCA problem: - the problem is W[1]-hard parameterized by the treedepth of the input graph, even on graphs of average degree at most 8. In particular, it is W[1]-hard parameterized by the treewidth of the input graph, which answers the main open problem of G\"oz\"upek et al. [TCS 2016]; - it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph; - it is FPT parameterized by the star tree-cutwidth of the input graph, which is a slightly restricted version of tree-cutwidth. This result strictly generalizes the FPT result given in G\"oz\"upek et al. [TCS 2016]; - it remains NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric costs.Comment: 25 pages, 11 figure

    Cooperative Jahn-Teller Effect and Electron-Phonon Coupling in La1−xAxMnO3La_{1-x}A_xMnO_3

    Full text link
    A classical model for the lattice distortions of \lax is derived and, in a mean field approximation, solved. The model is based on previous work by Kanamori and involves localized Mn d-electrons (which induce tetragonal distortions of the oxygen octahedra surrounding the Mn) and localized holes (which induce breathing distortions). Parameters are determined by fitting to the room temperature structure of LaMnO3LaMnO_3. The energy gained by formation of a local lattice distortion is found to be large, most likely ≈0.6\approx 0.6 eV per site, implying a strong electorn-phonon coupling and supporting polaronic models of transport in the doped materials. The structural transition is shown to be of the order-disorder type; the rapid x-dependence of the transition temperature is argued to occur because added holes produce a "random" field which misaligns the nearby sites.Comment: 24 pages. No figures. One Table. Late

    The charge ordered state in half-doped Bi-based manganites studied by 17^{17}O and 209^{209}Bi NMR

    Full text link
    We present a 209^{209}Bi and 17^{17}O NMR study of the Mn electron spin correlations developed in the charge ordered state of Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3}. The unusually large local magnetic field 209Hloc^{209}H_{loc} indicates the dominant 6s26s^{2} character of the lone electron pair of Bi3+^{3+}-ions in both compounds. The mechanism connecting the ss character of the lone pairs to the high temperature of charge ordering TCOT_{CO} is still not clarified. The observed difference in 209Hloc^{209}H_{loc} for Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} to Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3} is probably due to a decrease in the canting of the staggered magnetic moments of Mn3+^{3+}-ions from. The modification of the 17^{17}O spectra below TCOT_{CO} demonstrates that the line due to the apical oxygens is a unique local tool to study the development of the Mn spin correlations. In the AF state the analysis of the 17^{17}O spectrum of Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} prompts us to try two different theoretical descriptions of the charge-ordered state, a site-centered model for the first manganite and a bond-centered model for the second one.Comment: 10 pages, 7 figure

    Persistent Current in the Ferromagnetic Kondo Lattice Model

    Full text link
    In this paper, we study the zero temperature persistent current in a ferromagnetic Kondo lattice model in the strong coupling limit. In this model, there are spontaneous spin textures at some values of the external magnetic flux. These spin textures contribute a geometric flux, which can induce an additional spontaneous persistent current. Since this spin texture changes with the external magnetic flux, we find that there is an anomalous persistent current in some region of magnetic flux: near Phi/Phi_0=0 for an even number of electrons and Phi/Phi_0=1/2 for an odd number of electrons.Comment: 6 RevTeX pages, 10 figures include

    Phase separation in double exchange systems

    Full text link
    Ferromagnetic systems described by the double exchange model are investigated. At temperatures close to the Curie temperature, and for a wide range of doping levels, the system is unstable toward phase separation. The chemical potential decreases upon increasing doping, due to the significant dependence of the bandwidth on the number of carriers. The reduction of the electronic bandwidth by spin disorder leads to an enormously enhanced thermopower which peaks near T_c, with a sign opposite that predicted by a rigid band model.Comment: 4 pages, 2 encapsulated PostScript figure

    Spin flip scattering in magnetic junctions

    Full text link
    Processes which flip the spin of an electron tunneling in a junction made up of magnetic electrodes are studied. It is found that: i) Magnetic impurities give a contribution which increases the resistance and lowers the magnetoresistance, which saturates at low temperatures. The conductance increases at high fields. ii) Magnon assisted tunneling reduces the magnetoresistance as T3/2T^{3/2}, and leads to a non ohmic contribution to the resistance which goes as V3/2V^{3/2}, iii) Surface antiferromagnetic magnons, which may appear if the interface has different magnetic properties from the bulk, gives rise to T2T^2 and V2V^2 contributions to the magnetoresistance and resistance, respectively, and, iv) Coulomb blockade effects may enhance the magnetoresistance, when transport is dominated by cotunneling processes.Comment: 5 page

    Pressure Effects in Manganites with Layered Perovskite Structure

    Full text link
    Pressure effects on the charge and spin dynamics in the bilayer manganite compounds La2−2xSr1+2xMn2O7La_{2-2x}Sr_{1+2x}Mn_2O_7 are studied theoretically by taking into account the orbital degrees of freedom. The orbital degrees are active in the layered crystal structure, and applied hydrostatic pressure stabilizes the 3dx2−y23d_{x^2-y^2} orbital in comparison with 3d3z2−r23d_{3z^2-r^2}. The change of the orbital states weakens the interlayer charge and spin couplings, and suppresses the three dimensional ferromagnetic transition. Numerical results, based on an effective Hamiltonian which includes the energy level difference of the orbitals, show that the applied pressure controls the dimensionality of the spin and charge dynamics through changes of the orbital states.Comment: 5 pages, 2 figure

    Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1−xAxMnO3La_{1-x}A_xMnO_3

    Full text link
    A model for La1−xSrxMnO3La_{1-x}Sr_xMnO_3 which incorporates the physics of dynamic Jahn-Teller and double-exchange effects is presented and solved via a dynamical mean field approximation. In an intermediate coupling regime the interplay of these two effects is found to reproduce the behavior of the resistivity and magnetic transition temperature observed in La1−xSrxMnO3La_{1-x} Sr_x MnO_3.Comment: 11 pages. Latex. Minor revisions, including improvement of discussion of state with frozen-in lattice distortion. Figures (available from [email protected]) unchange
    • …
    corecore